Product Texts

This whitish fine powder PA 2200 on the basis of polyamide 12 serves with its very well-balanced property profile a wide variety of applications. Laser-sintered parts made from PA 2200 possess excellent material properties:

- high strength and stiffness
- good chemical resistance
- excellent long-term constant behaviour
- · high selectivity and detail resolution
- various finishing possibilities (e.g. metallisation, stove enamelling, vibratory grinding, tub colouring, bonding, powder coating, flocking)
- bio compatible according to EN ISO 10993-1 and USP/level VI/121 °C
- approved for food contact in compliance with the EU Plastics Directive 2002/72/EC (exception: high alcoholic foodstuff)

Typical applications of the material are fully functional plastic parts of highest quality. Due to the excellent mechanical properties the material is often used to substitute typical injection moulding plastics. The biocompatibility allows its use e.g. for prostheses, the high abrasion resistance allows e.g. the realisation of movable part connections.

120 µm layer thickness

The advantage of the Balance parameter set is equilibrium. The layer thickness of 120 µm offers a perfect balance between production costs, mechanical properties, surface quality and accuracy. It is therefore suitable for parts with varying geometries, dimensions and requirements.

More properties, especially anisotropic data of this material can be found at www.eos.info.

Mechanical properties	Value	Unit	Test Standard
ISO Data			
Tensile Modulus	1650	MPa	ISO 527
Tensile Strength	48	MPa	ISO 527
Strain at break	18	%	ISO 527
Flexural modulus, 23°C	1500	MPa	ISO 178
Charpy impact strength, +23°C	53	kJ/m²	ISO 179/1eU
Charpy notched impact strength, +23°C	4.8	kJ/m²	ISO 179/1eA
Izod notched impact strength, +23°C	4.4	kJ/m²	ISO 180/1A
Shore D hardness	75	-	ISO 7619-1

Thermal properties	Value	Unit	Test Standard
ISO Data			
Melting temperature, 10°C/min	176	°C	ISO 11357-1/-3
Vicat softening temperature, B	163	°C	ISO 306
Burning behav. at 1.5 mm nom. thickn.	НВ	class	IEC 60695-11-10
Thickness tested	1.6	mm	-
Burning behav. at thickness h	НВ	class	IEC 60695-11-10
Thickness tested	0.5	mm	-

Other properties	Value	Unit	Test Standard
Density	930	kg/m³	ISO 1183

Characteristics

Processing	Certifications
Additive Manufacturing, Laser Sintering	US Pharmacopeia Class VI Approved
Delivery form	Regional Availability
Powder, White	North America, Europe, Asia Pacific, South and Central America, Near East/Africa
Chemical Resistance	
General Chemical Resistance	

Created: 27.07.2021 Source: www.materialdatacenter.com